Vorab: meine Antwort beinhaltet nur theoretische Überlegungen, keine Erfahrungswerte.
Eine physikalische Formel für den Zusammenhang von Druck (p) und Temperatur (T) lautet:
p*V=n*R*T
V ist das Volumen in m^3, R ist die universelle Gaskonstante und n ist die Stoffmenge in mol.
Wir können davon ausgehen, dass V beim Beispiel eines Motorradreifens annähernd konstant ist. n ebenfalls, da bei der Erwärmung keine Luft zu- oder abgeführt wird. R ist sowieso konstant. Das bedeutet: p~T (der Druck ist direkt proportional zur Temperatur). Jetzt kann man das Beispiel sehr einfach berechnen. Das Ergebnis kommt maßgeblich darauf an, welche Tenperatur man für T(kalter Reifen) und T(warmer Reifen) nimmt, das ist Umgebungs- und Reifentypabhängig. Nehmen wir mal an, die Luft im Reifen hat kalt 15 Grad C, und Warm 50 Grad. Hierbei muss man beachten dass in der Physik in SI Einheiten gerechnet wird, Temperatur also in Kelvin. Der Kalte Reifen hat demnach 288K und der Warme 323K. Das entspricht einer Steigerung von 11,8%. Wenn der Reifen kalt einen Druck von 2,5bar hat, hat er dann warm einen Druck von ca 2,8 bar, also 0,3 bar Unterschied.
Man beachte, dass diese Rechnung stark dadurch beeinflusst wird, bei welcher Temperatur man „kalt“ den Reifendruck misst, und wie warm die Luft im Reifen im warmgefahrenen Zustand ist. Das ist stark abhängig vom Reifentyp, Slicks und Sportreifen werden deutlich wärmer als Touringreifen.
Mal abgesehen von der ganzen Sache dachte ich eigentlich immer dass es sich bei dem Empfohlenen Reifendruck um den Druck im kalten Zustand handelt.